

Bachelor of Science (B.Sc.) Semester-IV
Examination
MATHEMATICS (M₈-Mechanics)
Paper-II

Time—Three Hours] [Maximum Marks—60

N.B. :— (1) Solve all the **FIVE** questions.
(2) All questions carry equal marks.
(3) Questions 1 to 4 have an alternative. Solve each question in full or its alternative in full.

UNIT—I

1. (A) The moments of a given system of forces about three points (2, 0), (0, 2) and (2, 2) are 3, 4 and 10 units respectively. Find the magnitude of the resultant force and find the equation of its line of action. 6

(B) A regular hexagon ABCDEF consists of six equal rods which are each of weight W and are freely joined together. The hexagon rests in a vertical plane and AB is in contact with a horizontal table. If C and F be connected by a light string, prove that its tension is $W/\sqrt{3}$. 6

OR

Derive a Cartesian equation of the common catenary
i.e. Derive $y = c \cosh (x/c)$. 6

If a chain is suspended from two points A and B on the same level and depth of the middle point below AB is (ℓ/n) , where 2ℓ is the length of the chain, show that the horizontal span AB is equal to

$$\ell(n-1/n) \log\left(\frac{nH}{n-1}\right).$$

6

UNIT-II

2. (A) The velocity of a particle along and perpendicular to the radius vector are λr and $\mu \theta$. Find the path and show that the acceleration along and perpendicular to the radius vector are $(\lambda^2 r - \mu^2 \theta^2)/r$ and $\mu \theta (\lambda + \frac{\mu}{r})$ respectively. 6

(B) A small bead slides with constant speed v on a smooth wire in the shape of the cardioid $r = a(1 + \cos \theta)$. Show that the value of $\frac{d\theta}{dt}$ is $\left(\frac{v}{2a}\right) \sec\left(\frac{\theta}{2}\right)$ and that the radial component of the acceleration is constant. 6

OR

A particle describes a curve, for which s and x vanish simultaneously, with uniform speed v . If the acceleration at any point 's' be $\frac{v^2 c}{s^2 + c^2}$, find the intrinsic equation of the curve. 6

(D) Show that the particle executing simple Harmonic

Motion requires $\frac{1}{6}$ th of its period to move from the position of maximum displacement to one in which the displacement is half the amplitude. 6

UNIT—III

3. (A) Derive the Lagrange's equations of motion given by

$$\frac{d}{dt} \left[\frac{\partial T}{\partial q_j} \right] - \left(\frac{\partial T}{\partial q_j} \right) = Q_j, \quad j = 1, 2, \dots, n$$

by using D'Alembert's principle,

where $Q_j = \sum_i \vec{F}_i \cdot \frac{\partial \vec{r}_i}{\partial q_j}$ the components of the generalized force,

$T = \sum_i \frac{1}{2} m_i v_i^2$ the kinetic energy of the system,

q_j = the generalized coordinates,

\dot{q}_j = the generalized velocities. 6

(B) A bead is sliding on a uniformly rotating wire in a force-free-space. If w is the angular velocity of rotation, then show that the equation of motion is given by
 $\ddot{r} = rw^2$. 6

OR

(C) Obtain the Lagrange equations of motion for a spherical pendulum i.e. a mass point suspended by a rigid weightless rod. 6

(D) For conservative system, prove that the Lagrange equations can be written as

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_j} \right) - \frac{\partial L}{\partial q_j} = 0, \quad j = 1, 2, \dots, n,$$

where $L \equiv$ Lagrangian for the system $= T - V$,

$T \equiv$ K.E. of the system,

$V \equiv$ P.E. of the system,

$q_j \equiv$ generalized coordinates,

$\dot{q}_j \equiv$ generalized velocities. 6

UNIT—IV

4. (A) For a general system of mass points with position vectors \vec{r}_i and applied forces \vec{F}_i , including any forces of constraint, prove that $\bar{T} = -1/2 \sum_i \vec{F}_i \cdot \vec{r}_i$, where $T =$ kinetic energy of the system. 6

(B) Show that if a particle describes a circular orbit under the influence of an attractive central force directed toward a point on a circle, then the force varies as the inverse fifth power of the distance.

6

OR

(C) In a central force field, prove that the relation between r and t is given by

$$t = \int_{r_0}^r \frac{dr}{\sqrt{\left[\frac{2}{m} \left(E - V - \frac{\ell^2}{2mr^2} \right) \right]}},$$

where $E \equiv$ total energy, $V \equiv$ potential energy. 6

(D) Prove that the orbit of a particle moving in a central force field is given by

$$\theta = \theta_0 - \int_{u_0}^u \frac{du}{\sqrt{\left[\frac{2mE}{\ell^2} - \frac{2mV}{\ell^2} - u^2 \right]}}.$$

where $E \equiv$ total energy

$V \equiv$ potential energy

$m \equiv$ mass. 6

UNIT—V

5. (A) Let X and Y be the sum of the resolved parts of the forces about O_x and O_y compounded into a single force R acting at the origin O , and G be their moment about O . If G' is the moment of the system about any point (z, η) and $R = 0$, then show that $G \neq 0$.

1½

(B) For the common catenary, show that $y^2 = c^2 + s^2$. 1½

(C) A point describes the equiangular spiral $r = e^\theta$ with a constant angular velocity 'w' about O. Show that radial acceleration is zero. 1½

(D) A point moves in a plane curve, so that its tangential and normal accelerations are equal, show that $v = c \cdot e^x$. 1½

(E) If the total torque \vec{N} is zero then prove that $\dot{\vec{L}} = 0$ and the angular momentum \vec{L} is conserved. 1½

(F) Define degrees of freedom with examples for xy-plane. 1½

(G) In a central force field, prove that the areal velocity is constant. 1½

(H) Define a central orbit and write its differential equation. 1½